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This lecture is an introduction to image synthesis with emphasis set on the specific problems encoun-
tered in optical (visible/IR) interferometry. Image synthesis is first presented in the context of complex
visibility data obtained with a known transfer function. This simple case is used to introduce the concept
of regularization which is needed to lever degeneracies (due to missing spatial frequencies) of the image
reconstruction problem. When the complex amplitude transmissions are unknown but vary slowly with
respect to the exposure time, the self calibration method can recover both the amplitude transmissions
and the image. When the complex amplitude transmissions vary too quickly, as it is generally the case in
optical interferometry, the data consist in non-linear measurements such as the powerspectrum and the
bispectrum which are insensitive to the fast varying aberrations set by the turbulence at the cost of some
loss of Fourier phase information. We show how the inverse problem approach presented for the simpler
cases can be extended to obtain effective image restoration algorithms.

� 2010 Elsevier B.V. All rights reserved.
The first multi-telescope optical interferometer (Labeyrie, 1975)
had two telescopes and could only measure the squared visibility
(the powerspectrum) of some bright stars. With up to 6 telescopes,
current optical interferometers (Monnier, 2003;Quirrenbach,
2009) provide enough data to consider image reconstruction at
sub-milliarcsecond resolution of the observed objects which can
be fainter and more complex in structure. There are an increasing
number of astrophysical applications: stellar surfaces, environ-
ment of pre-main sequence or evolved stars, central regions of ac-
tive galaxies, etc. Quirrenbach (2001), Monnier (2003) and Perrin
(2009) give comprehensive reviews of optical interferometry and
summarize some astrophysical results. For examples of image
reconstructions of stellar surfaces and nearby star environments,
see Lacour et al. (2008), Le Bouquin et al. (2009) and Lacour et al.
(2009).

Multi-telescope interferometers do not directly provide images
but sparse measurements of the complex visibility of the observed
objects (the Fourier transform of their brightness distribution; cf.
Section 1). Hence reconstruction methods are needed to fully
exploit these instruments. When the complex visibilities can be
reliably measured, algorithms similar to those developed for
radio-interferometry are able to cope with the missing informa-
tion; that is, the voids in the sampled spatial frequencies. These
methods can be derived in the general framework of inverse prob-
lem approach (cf. Section 2). At optical wavelengths, additional
problems arise due to the additional loss of part of Fourier phase
information. These issues had led to the development of specific
ll rights reserved.

ic.thiebaut/
algorithms for image reconstruction from the powerspectrum
and the phase closure. These new algorithms can also be formally
described in the same general framework (cf. Section 3).
1. Principle of optical interferometry

The instantaneous output of an optical interferometer is the so-
called complex visibilities V of the interference fringes between two
telescopes and is directly related to the Fourier transform bIðmÞ of
the object brightness distribution1 I(h). At instant t, the complex vis-
ibility Vj1 ;j2 ðtÞ of the fringes given by the j1th and j2th telescopes
writes (see Fig. 1):

Vj1 ;j2 ðtÞ ¼ gj1
ðtÞHgj2

ðtÞbIðmj1 ;j2 ðtÞÞ ð1Þ

where the gain gj(t) is the complex amplitude throughput of the jth
telescope and mj1 ;j2 ðtÞ is the spatial frequency measured by the pair
of telescopes (j1, j2). Assuming that the diameters of the telescopes
are much smaller than their projected separation (on a plane per-
pendicular to the line of sight), the measured spatial frequency
writes:

mj1 ;j2 ðtÞ ¼
rj2 ðtÞ � rj1 ðtÞ

k
ð2Þ

where rj(t) is the projected position of jth telescope and k is the
wavelength. Usually, there is a small number of recombined tele-
scopes, hence interferometry yields a very sparse coverage of the
1 It is assumed here that the object brightness distribution remains the same
uring the observations.
d
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Fig. 1. Geometrical layout of an interferometer. B is the projected baseline, h is the
view angle and d is the geometrical optical path difference which is compensated by
the delay lines.

Fig. 2. u–v Coverage at different wavelengths in the H-band for observations of
Arcturus in May 2006 with IOTA and achieved with a maximum baseline of 37.7 m
(Lacour et al., 2008).
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spatial frequencies. Fig. 2 shows a typical case of u–v coverage, so-
called after the usual notation (u, v) for the coordinates of the spa-
tial frequencies. Observe how the Earth rotation results in approxi-
mately elliptical tracks whereas changes in wavelength yield radial
extension of the u–v coverage.

The transmission gains are dimensionless complex numbers:

gjðtÞ ¼ sjðtÞei/jðtÞ ð3Þ

with amplitude sj(t) = jgj(t)j and phase /j(t). Thanks to photometric
calibration (requiring that the instantaneous flux transmitted by
each telescope be measured simultaneously), the amplitude of the
effective gain can be made almost equal to one: sj(t) = jgj(t)j ’ 1. Be-
sides, the phase of the gain is due to an optical path difference
(OPD) dj(t) which is variable and different for each telescope:

/jðtÞ ¼ 2pdjðtÞ=k: ð4Þ

The OPD is caused by tracking errors in the delay lines and by the
atmospheric turbulence. Hence, it may be quickly variable and is
mostly unknown.
Image synthesis from interferometric data has to cope with
two main issues. First, the sparseness of the u–v coverage implies
that the measured complex visibilities alone are not sufficient to
uniquely define an image. In effect, any brightness distribution of
which the Fourier transform is compatible with data at sampled
spatial frequencies and which takes any value elsewhere is a
legitimate image. In other words, the image restoration problem
is ill-posed and additional constraints are required to select a un-
ique image among all those which are in agreement with the
data. We deal with this problem in Section 2. Second, the com-
plex gains may be poorly calibrated or unknown and may vary
quickly during a single exposure. This is a very important issue
at short (visible/IR) wavelengths because of the atmospherics tur-
bulence. Depending on how fast the complex gains change, two
different approaches can be used to overcome this problem. For
gains approximately constant during an exposure, self-calibration
methods (cf. Section 3.2) guess the complex transmissions from
the data and the current image. Then, standard image restoration
methods (cf. Section 2) can be used to build a new image given
the complex gains and the data. For fast varying throughput, in-
stead of the complex visibility, other quantities such as the pow-
erspectrum and the phase closure (bispectrum) which are
insensitive to OPD errors are integrated during each exposure.
This is to the cost of missing part of the Fourier phase informa-
tion (cf. Section 3.3). Restoring an image from the powerspectrum
and the bispectrum (or closure phase) require specific algorithms
described in Section 3.5.
2. Image synthesis

We introduce here means to properly solve the problem of syn-
thesizing an image from sparse measurements of its Fourier trans-
form. For the moment, we assume that the complex gains are
known and that the exposure time is short enough to freeze any
temporal evolution. The cases when these assumptions do no ap-
ply is considered later in Section 3.

2.1. Model of the data

From the assumptions, the expected complex visibilities at the
sampled frequencies write:

Vj1 ;j2 ;m ¼ hVj1 ;j2 ðtÞim ’ Vj1 ;j2 ðtmÞ ’ gH

j1 ;m
gj2 ;m

bIðmj1 ;j2 ;mÞ ð5Þ

where h im denotes averaging during mth exposure at mean time
tm = htim and:

gj;m ¼ hgjðtÞim ’ gjðtmÞ; ð6Þ
rj;m ¼ hrjðtÞim ’ rjðtmÞ; ð7Þ
mj1 ;j2 ;m ¼ hmj1 ;j2 ðtÞim ’ ðrj2 ;m � rj1 ;mÞ=k: ð8Þ

Accounting for the noise and approximations in our description, the
measured complex visibilities are:

Vdata
j1 ;j2 ;m

¼ gH

j1 ;m
gj2 ;m

bIðmj1 ;j2 ;mÞ þ ej1 ;j2 ;m ð9Þ

where e denotes the errors, that is, all discrepancies between the
data and the model gH

j1 ;m
gj2 ;m

bIðmj1 ;j2 ;mÞ in particular noise and model-
ing errors.

Looking closely at Eq. (9), one can note that image restoration
given the data is very similar to a (multi-frame) deconvolution
problem where the terms gH

j1 ;m
gj2 ;m

would play the role of the opti-
cal transfer function (OTF) at spatial frequency mj1 ;j2 ;m. That is why
some authors use the terms image deconvolution instead of image
synthesis.



2 To interpolate a given spatial frequency, the number of operations scales as the
number of nearest frequels considered.
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2.2. Image model and its Fourier transform

Now that we have a model linking the data and the object of
interest, we need a parametrized model of the image, that is, the
object brightness distribution. However it is not question here to
use a restricted parametric model such as a limb darkening law
but rather to discretize the brightness distribution of the object
(as the pixels of a numerical image are a discretized version of
the observed scene). For instance, a general linear expansion
yields:

IðhÞ ¼
XN

n¼1

xnbnðhÞ !
F:T: bIðmÞ ¼XN

n¼1

xnb̂nðmÞ; ð10Þ

where {bn(h);n = 1,. . .,N} are basis functions and x 2 RN are the
image parameters. Given a grid of angular directions G ¼
fhn; n ¼ 1; . . . ;Ng, a grid model is obtained by using a single building
block function b(Dh) shifted at the grid nodes:

IðhÞ ¼
XN

n¼1

xnbðh� hnÞ !
F:T: bIðmÞ ¼ b̂ðmÞ

XN

n¼1

xn e�2iphn �m : ð11Þ

Using an equispaced grid, the usual pixelized image representation
is obtained with the pixel shape given by the building block func-
tion b(Dh). The model in Eq. (11) is however more general. For in-
stance, the basis function can be used to set the effective
resolution of the synthesized image whereas the grid spacing is pur-
posely much smaller to avoid grid biases (Lannes et al., 1997).

Whatever is the choice of the parametrization, for the set of
sampled spatial frequencies L ¼ fmk; k ¼ 1; . . . ;Kg, the model of
the complex visibility is linear:

VkðxÞ ¼ bIðmkÞ ¼
XN

n¼1

Ak;nxn; ð12Þ

where the coefficients of the matrix A 2 CK�N are:

Ak;n ¼ b̂nðmkÞ; ð13Þ

for the general linear expansion in Eq. (10); and

Ak;n ¼ b̂ðmkÞe�2iphn �mk ; ð14Þ

for the building block model in Eq. (11). The data Eq. (9) now writes:

Vdata
j1 ;j2 ;m

¼ gH

j1 ;m
gj2 ;m

VkðxÞ þ ej1 ;j2 ;m ¼ gH

j1 ;m
gj2 ;m
ðA � xÞk þ ej1 ;j2 ;m

for any triplet (j1, j2, m) that belongs to the set Bk of telescope indi-
ces and exposure index which sample the kth spatial frequency,
that is:

ðj1; j2;mÞ 2 Bk ()
rj2 ;m � rj1 ;m

k
¼ mk

or equivalently:

Bk ¼
def ðj1; j2;mÞ 2 A2 � E; rj2 ;m � rj1 ;m

k
¼ mk

� �
ð15Þ

where A and E are, respectively the lists of indices of apertures
(telescopes or antennae) and exposures. Introducing Bk and the list
of observed frequencies L ¼ fmk; k ¼ 1; . . . ;Kg is a simple means to
account for all possible cases (e.g. with or without redundancies,
multiple data sets, observations from different interferometers etc.).

Finally, the data Eq. (9) can be written in a very general way as:

d ¼ mðx; gÞ þ e ð16Þ

where d ¼ Vdata
j1 ;j2 ;m

; 8ðj1; j2;mÞ
n o

is the set of measured complex vis-
ibilities, m(x;g) is the model which depends on the parameters x
and on g = {gj,m; "(j,m)} which characterizes the instrumental re-
sponse, and e = {ej1,j2,m; "(j1, j2,m)} accounts for errors due to noise
and approximations. The model of the complex visibilities in Eq.
(12) is linear with respect to the parameters and so is the model
of the data, hence Eq. (16) simplifies to an affine equation:

d ¼ G � A � xþ e ¼ M � xþ e ð17Þ

where M = G�A and G is a diagonal matrix which accounts for the
amplitude transmission gains:

Gj1 ;j2 ;m;k ¼
gH

j1 ;m
gj2 ;m

if ðj1; j2;mÞ 2 Bk

0 else:

(
ð18Þ

Compared to more conventional imaging techniques, G and A are
the analogous for aperture synthesis of the optical transfer function
(OTF) and of the Fourier transform, respectively.

2.3. Fourier interpolation and regridding

We will see in what follows that image restoration is achieved
by iterative algorithms which involve many multiplications by
the model matrix A or its conjugate transpose. The matrix A has
K � N complex coefficients, where K is the number of different spa-
tial frequencies that have been sampled during the observations
and N is the number of image parameters (e.g. the pixels). Account-
ing for the fact that the parameters x are real, matrix multiplication
by A involves 3KN operations. This may be prohibitive in terms of
memory requirements and computational burden. For instance, a
256 � 256 image and 1000 measurements would require �1giga-
byte of memory to store the matrix and �200millions of floating
point operations to apply it.

Under certain restrictions, multiplication by A can be approxi-
mated by a discrete Fourier transform (DFT) which can be com-
puted in a much faster way (and with negligible memory needs)
thanks to the fast Fourier transform (FFT). This however imposes
that the image and its spectrum be periodical discretized functions
and is restricted to equally spaced sampling of the direct and con-
jugate space with sampling steps such that:

Dmd ¼
1

NdDhd
¼ 1

Xd
; ð19Þ

where Nd is the number of pixels along dth dimension, Dmd and Dhd

are the spatial frequency and angular direction steps along this
dimension, and Xd is the width of the field of view (FOV) in this
dimension. The counterpart of Eq. (19) is:

Dhd ¼
1

NdDmd
¼ 1

2mcut
d

; ð20Þ

where mcut
d ¼max jmdj is the Nyquist frequency along dth dimension

which is the maximum frequency in the model without aliasing.
Note that, to avoid anisotropic effects, the number of elements
and the pixel size are usually chosen to be the same along the
two spatial dimensions. We therefore drop the index d in what
follows.

Using the FFT imposes that the discrete Fourier transform of the
model image be sampled on an equally spaced grid of so-called fre-
quels. It is unlikely that observed spatial frequencies do coincide
with anyone of the frequels. The complex visibility at observed
spatial frequencies must therefore be interpolated from the FFT
of the image. A first possibility is to use the nearest discrete fre-
quency. This however leads to a very coarse approximation (espe-
cially for the lowest frequencies) unless a very large field of view
(FOV) is used. Interpolation from the few (usually 4 or 16) nearest
frequels is cheap to compute2 and gives a substantially more accu-
rate approximation. Denoting by R the interpolation operator in the
spatial frequency plane, the model matrix A is approximated by:
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A ’ R � F; ð21Þ

where F is the discrete Fourier transform operator (computed by
FFT). Note that Fourier interpolation by the operator R is equiva-
lent to convolving the Fourier spectrum with the interpolation
kernel (a square box for nearest neighbor interpolation, a bi-linear
spline for bi-linear interpolation, etc.). Hence R does some Fourier
smoothing which implies that the model image is implicitly multi-
plied by a tapering function equals to the inverse Fourier trans-
form of the interpolation kernel. This set a limit on the effective
field of view of the synthesized image. If the basis function
b(Dh) is not a Dirac distribution (delta function), then multiplica-
tion by its Fourier transform, see Eq. (14), can be accounted for by
R.

If P is the number of neighbor frequels considered in the inter-
polation of a sampled spatial frequency, R can have has few as
K � P non-zero coefficients and necessitates 2 (2P � 1)K � 4KP
operations to be applied. The memory requirements of the FFT
are very modest (though it depends on the particular implemen-
tation) and its computational cost scales as gN logN with, e.g.
g � 5 for a real-complex transform by FFTW (Frigo and Johnson,
2005). The approximation R�F of the model matrix is therefore
much more inexpensive to store and apply than the exact trans-
form by A.

In radio astronomy a different technique called regridding
(Thompson and Bracewell, 1974;Sramek et al., 1989) is generally
used and which consists in interpolating the data onto the grid
of frequels. The advantage is that, when there are a great number
of measurements, the number of pseudo-data is reduced which
may speed up further computations. There are however a number
of drawbacks to the regridding technique. (i) Strictly speaking, the
pseudo-data are correlated even if the original data are not. These
correlations are usually ignored in further processing and the pseu-
do-data are assumed to be independent which results in a poor
approximation of the real likelihood. (ii) It is not easy to resample
non-linear estimators such as the phase closure and powerspec-
trum at least because these quantities are not smooth (the phase
and partial derivatives of the powerspectrum are undefined at spa-
tial frequencies where the complex visibility is zero, and the phase
is further wrapped). Fig. 3 schematically compares regridding (that
is, interpolation of the data) to Fourier interpolation (that is, inter-
polation of the model).
Fig. 3. Regridding of the data (top) an
Similar needs in crystallography, tomography and bio-medical
imaging have lead to a number of significant progresses in the
development of fast algorithms to approximate the Fourier trans-
form of non-equispaced data (Potts et al., 2001). These algorithms
may be worth considering for interferometric imaging as they are
not only fast but also achieve good numerical precision and would
give better approximations for A than simple Fourier interpolation,
or regridding.

2.4. Choosing the resolution and field of view of the synthetic image

Another consequence of using FFT’s to compute the model of
the complex visibility is that the choice of the number of pixels
and of the spatial sampling dictates the resolution of the model
in the u–v plane, see Eq. (19) or Eq. (20). To avoid that the model
imposes too much spectral smoothness (with exact Fourier trans-
form) or field of view aliasing (with the discrete Fourier transform),
the size of the field of view must be chosen large enough to prop-
erly sample the u–v plane. Also, to not be too much biased by the
particular image model, e.g. by the pixel shape b(Dh), the spatial
resolution of the model should be well beyond the limit imposed
by the longest baseline:

Dh� k
2Bmax

ð22Þ

where Bmax ¼maxj1 ;j2 ;tjrj1 ðtÞ � rj2 ðtÞj is the maximum projected sep-
aration between interfering telescopes. As a rule of thumb, a super
resolution by, at least, a factor of 2 is usually used and the pixel size
can be given by:

DhK k
4Bmax

: ð23Þ
2.5. Maximum likelihood yields ‘‘dirty” images

Now that we are equipped with a model of the measured com-
plex visibilities related to our image parameters, we can attempt to
derive practical means to recover the image from the data. Owing
to measurement noise and model approximations, we expect some
discrepancy between our model and the actual data and a criterion
is needed to select the best image given the data. For instance, we
d Fourier interpolation (bottom).
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can seek for the model parameters that maximize the probability
of having observed the data. This leads to the so-called maximum
likelihood (ML) solution:

xML ¼ arg max
x

Prðdjx; gÞ ð24Þ

where the mathematical notation ‘‘. . . = argmaxx. . .” means that the
left hand side is equal to the particular value of x that maximizes

the right hand side expression, the data vector d ¼ Vdata
j1 ;j2 ;m

;
n

8ðj1; j2;mÞg collects the measured complex visibilities, g = {gj,m;
"(j,m)} characterizes the instrumental response, and x are the im-
age parameters. Probabilities are numerically unpractical, it is com-
mon practice to use the opposite of their logarithm instead. Hence,
introducing the maximum likelihood penalty:

fMLðxÞ ¼def�c1 log Prðdjx; gÞ þ c0; ð25Þ

where c1 > 0 and c0 are arbitrary constants chosen to simplify the
expression of fML, the maximum likelihood solution becomes:

xML ¼ arg min
x

fMLðxÞ: ð26Þ

Assuming that errors e, see Eq. (16), have a centered Gaussian dis-
tribution yields:

fMLðxÞ ¼ ½d�mðx; gÞ�T �Werr � ½d�mðx; gÞ� ð27Þ

where m(x;g) is the parametrized model of the data and the weight-
ing matrix Werr = Cerr

�1 is the inverse of the covariance matrix of the
errors Cerr = he�eTi. There is an additional issue to take care of be-
cause we are dealing with complex data. In fact, since complex
numbers are just pairs of reals (the real and imaginary parts of
the complex), complex valued vectors (such as d, m and e) can be
flattened into ordinary real vectors (with twice the number of com-
plex elements) to use ordinary linear algebra notation for the dot
product and transpose operation. This is what is assumed in Eq.
(27).

From Eq. (17), the model m(x;g) = M(g)�x is linear and the max-
imum likelihood penalty writes:

fMLðxÞ ¼ ½d�MðgÞ � x�T �Werr � ½d�MðgÞ � x�: ð28Þ

Then, the minimum of fML(x) with respect to the parameters x
solves the so-called normal equations:

MT �Werr �M � xML ¼MT �Werr � d; ð29Þ

obtained by stated that the gradient of fML(x) with respect to x must
be null at the solution xML since it is a stationary point. Due to voids
in the u–v coverage, the matrix MT�Werr�M is singular and there is no
unique solution to the normal equations. However, since MT�Werr�M
is positive (semi-definite), all the solutions of the normal equations
are local minima of fML(x). This means that, as we already have intu-
itively guessed, the data alone are not sufficient to recover an image
without ambiguity. Additional constraints or assumptions are
needed to overcome this problem. The simplest solution is to use
the pseudo-inverse of MT�Werr�M and leads to:

xdirty ¼ ½MT �Werr �M�y �MT �Werr � d ð30Þ

which is called the dirty map or dirty image for reasons that we clar-
ify later. By using the pseudo-inverse, xdirty is, in fact, the solution of
the modified optimization problem:

xdirty ¼ lim
l!0þ

arg min
x

fMLðxÞ þ lkxk2
2

n o
ð31Þ

where kxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
xT � x
p

is the Euclidean (‘2) norm of x. Hence the dirty
map is the minimum norm image that maximizes the likelihood of
the data.
Computation and interpretation of the dirty image is very easy
in the following simplified case. First, we assume white Gaussian
errors, hence the weighting matrix is proportional to the identity,
Werr / I. Second, we consider calibrated data (all the gains are equal
to one) with observed spatial frequencies being a subset of the fre-
quel grid, hence the model matrix becomes M = A = S�F where F is
the FFT operator and S is a sub-sampling operator which selects
measured spatial frequencies among all the frequels (its coeffi-
cients are only 0’s or 1’s). Then, the dirty map is simply obtained
by inverse Fourier transforming the complex visibilities with val-
ues set to zero at missing spatial frequencies:

xdirty ¼ F�1 � ST � d: ð32Þ

which is straightforward to obtain as F is invertible and S� = ST.
Fig. 4 shows that the resulting image has a lot of artifacts hence
its name of dirty map. Replacing the data vector d by its expression
in Eq. (17) and taking the expectation of Eq. (32) yields:

hxdirtyi ¼ F�1 � ST � S � F � xtrue ð33Þ

where xtrue is the true image. ST�S being a diagonal matrix, hxdirtyi is
just the true brightness distribution convolved by an equivalent
point spread function (PSF), the so-called dirty beam:

hdirty ¼ F�1 � diagðST � SÞ; ð34Þ

where diag(A) is the vector built from the diagonal of matrix A. The
2-D OTF ĥdirty ¼ diagðST � SÞ is equals to 0 or 1 depending whether
the corresponding frequel has been sampled by the data or not.

Clearly (cf. Fig. 4), the dirty image is not a satisfactorily solution:
we need better means to select the best image among all those
compatible with the data. This is the purpose of the next section.

2.6. Maximum a posteriori

Coming back to probabilities, additional constraints for the
sought image can be set by assigning a high or a low probability
to images depending whether they match the priors or not. In or-
der to account for such a prior probability (which does not depend
on the data) and for the data, we are led to select the most probable
image given the data and the instrumental response which is the
so-called maximum a posteriori (MAP) solution:

xMAP ¼ arg max
x

Prðxjd; gÞ: ð35Þ

By Bayes’ theorem and assuming the instrumental response is
known, the joint probability of the data and the parameters expands
as:

Prðx;d; gÞ ¼ Prðd; gÞPrðxjd; gÞ ¼ PrðxÞPrðdjx; gÞ ð36Þ

where it has been accounted for the fact that the image parameters
x do not depend a priori on the instrumental transmissions g. More-
over, the probability of the data does not depend on the sought
parameters, hence:

xMAP ¼ arg max
x

Prðdjx; gÞPrðxÞ ð37Þ

and taking the negative log-probabilities:

xMAP ¼ arg min
x

fdataðx; gÞ þ fpriorðxÞ
� �

ð38Þ

where

fdataðx; gÞ ¼ �c1 log Prðdjx; gÞ þ c0 ¼ fMLðxÞ; ð39Þ
fpriorðxÞ ¼ �c1 log PrðxÞ þ c00: ð40Þ

The posterior penalty is the sum of two terms: a likelihood term
fdata(x,g) = fML(x) which enforces agreement of the model with the
data, and a regularization term fprior(x) which accounts for prior
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Fig. 4. Top left: u–v coverage. Top right: observed object. Bottom left: dirty beam. Bottom right: dirty image. Object model and u–v coverage are from the 2004’ Beauty Contest
(Lawson et al., 2004).
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constraints. Compared to the maximum likelihood case (cf. Section
2.5), the additional regularization penalty helps to select, among all
image model compatible with the data, the one which most fit our
priors.
2.7. Pragmatic Bayesian approach

The previous reasoning is based on strict Bayesian approach
but, in practice, while the statistics of the data is (approximately)
known, the exact a priori statistics is often unknown.3 At least,
the priors must have some mathematical properties: (i) they must
lever degeneracies due to the ill-posedness of the problem in order
to lead to a unique solution; (ii) they must avoid noise ampli-
fication for ill-conditioned inverse problems.4 For instance, the
regularization can impose sufficient smoothness to avoid noise
amplification, or compactness which helps filling voids in u–v cover-
age. In interferometry, the problem is mostly ill-posed because of the
sparseness of the u–v coverage and other missing data. These consid-
erations give qualitative hints to the kind of required priors, yet we
do not know to what level they must be imposed.

In words, we want to match the priors (e.g. the restored image
must be compact and/or smooth) as much as possible, that is, min-
imize the regularization penalty:
3 Despite theoretical arguments that could be invoked, see for instance the debate
in radio-astronomy to justify the definition of the entropy of an image.

4 The problem is said to be ill-conditioned when a small change in the data yields an
arbitrarily large change in the solution obtained by direct inversion, that is, without
regularization.
min
x

fpriorðxÞ ð41Þ

whereas we want that the model remains compatible with the data:

fdataðxÞ 6 gdata ð42Þ

where gdata is set according to the noise level, and, possibly,
accounting for strict constraints such as positivity and
normalization:

x P 0 and
X

n

xn ¼ 1; ð43Þ

where x P 0 means: "n,xn P 0. Putting all these requirements to-
gether, we are lead to solve the constrained optimization problem:

xþ ¼ arg min
x2X

fpriorðxÞ s:t: f dataðxÞ 6 gdata; ð44Þ

where X ¼ x 2 RN; x P 0;
P

nxn ¼ 1
� �

is the set of feasible solu-
tions according to Eq. (43). The Lagrangian of this constrained opti-
mization problem writes:

Lðx; ‘Þ ¼ fpriorðxÞ þ ‘ fdataðxÞ � gdatað Þ ð45Þ

where ‘ is the Lagrange multiplier associated to the constraint
fdata(x) 6 gdata. If the constraint is active,5 then ‘ > 0 and such that
fdata(x) = gdata (Nocedal and Wright, 2006;Bonnans et al., 2006).
Taking l = 1/‘ and dropping the constant gdata (which does not
5 Conversely, the constraint being inactive would imply that ‘ = 0 which would
mean that the data are useless, which is hopefully not the case. . ..



Fig. 5. Convex quadratic approximations of complex data. Thick lines: v2 isocon-
tours (at 1, 2 and 3 rms levels) for a complex data with independent amplitude and
phase. Dashed lines: isocontours for the global quadratic approximation. Thin lines:
isocontours for the local quadratic approximation. Note that Goodman approxima-
tion would give circular isocontours in this figure.
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depend on x), the solution is obtained by solving one of the following
equivalent optimization problems:

xþ ¼ arg min
x2X

ffpriorðxÞ þ ‘fdataðxÞg ¼ arg min
x2X

ffdataðxÞ þ lfpriorðxÞg

¼ arg min
x2X

f ðx;lÞ;

where

f ðx; lÞ ¼ fdataðxÞ þ lfpriorðxÞ ð46Þ

is the penalty function and l > 0 has to be tuned to match the con-
straint fdata(x) = gdata. These developments also show that we can
equivalently consider that we are solving the problem of maximiz-
ing the likelihood of the data, that is, minimize fdata(x), subject to the
constraint that the prior be below a preset level gprior:

xþ ¼ arg min
x2X

fdataðxÞ s:t: f priorðxÞ 6 gprior: ð47Þ

Providing the Lagrange multipliers (l and ‘) and the thresholds (gda-

ta and gprior) are set consistently, the image restoration is equiva-
lently achieved by solving either of the problems in Eqs. (44), (47)
or by minimizing the penalty function in Eq. (46). However choos-
ing which of these particular problems to solve can be a deciding is-
sue for the efficiency of the method. For instance, if fdata(x) and
fprior(x) are both smooth functions, direct minimization of f(x;l) in
Eq. (46) can be done by using general purpose optimization algo-
rithms but requires to know the value of the Lagrange multiplier.
If the penalty functions are not smooth or if one wants to have
the Lagrange multiplier automatically tuned given gdata or gprior,
more specific algorithms must be devised. As we will see in the fol-
lowing, specifying the image synthesis as a constrained optimiza-
tion problem provides a very general framework suitable to
describe most existing algorithms and their properties but it may
hide important algorithmic details. We can already anticipate that
image synthesis algorithms will differ by the following ingredients:

� the type of data taken into account (e.g. complex visibilities,
uncalibrated data, powerspectrum and phase closure);
� the model approximations (e.g. exact Fourier transform, Fourier

interpolation, regridding);
� the definition of the feasible domain X , that is, the strict con-

straints such as positivity and normalization;
� the prior type and level;
� the numerical algorithm to solve the problem.

All these ingredients, but the last one, completely define the
constrained optimization problem. Hence, for a (strictly) convex
penalty f(x) and a convex feasible domain X , they are sufficient
to specify the solution sought by the image synthesis algorithm.
In that case, the numerical optimization algorithm has only an inci-
dence on the computational time required to obtain the solution.
However, for non-convex criteria, as it is the case when the gains
are unknown (cf. Section 3.2) or when dealing with powerspec-
trum and bispectrum data (cf. Section 3.3), the numerical optimi-
zation method used to solve the problem has a more important
incidence as different methods applied to the same (non-convex)
problem may provide different solutions.

Going back to the dirty image case (cf. Section 2.5), we see that
the degeneracy due to incomplete u–v coverage was solved by
using the pseudo-inverse which is identical to compute the solu-
tion of a regularization problem in the limit of a negligible (but still
non null) value of l. The term lkxk2 is the simplest quadratic reg-
ularization that could be used, incidentally Tikhonov (Tikhonov
and Arsenin, 1977) was the first to propose this kind of regulariza-
tion to solve inverse problems.
2.8. Likelihood criterion

Assuming complex visibility data follow a (multi-variable)
Gaussian distribution, then Eq. (27) can be used to define the like-
lihood criterion fdata. However, there are some possible simplifica-
tions. For instance, if the complex visibility measurements are
independent Gaussian variables and if the real and imaginary parts
have the same variance, then the likelihood penalty takes a simple
form:

fdataðx; gÞ ¼
X

k

X
ðj1 ;j2 ;mÞ2Bk

wj1 ;j2 ;m Vdata
j1 ;j2 ;m

� gH

j1 ;m
gj2 ;m

VkðxÞ
��� ���2; ð48Þ

where the weights are given by:

wj1 ;j2 ;m ¼ Var Re Vdata
j1 ;j2 ;m

� 	� 	�1
¼ Var Im Vdata

j1 ;j2 ;m

� 	� 	�1
: ð49Þ

This expression is very commonly used in interferometry and was
popularized by Goodman (1985). Using the same simplified notation
as in Section 2.5, the likelihood writes:

fdataðx; gÞ ¼
X

k

wkjdk �mkðx; gÞj2; ð50Þ

where dk and mk are the complex visibility data and model in kth
spatial frequency.

Real data may however have a different statistics. For instance,
the OI-FITS file exchange format for optical interferometric data as-
sumes that the amplitude and the phase of complex data (complex
visibility or triple product) are independent (Pauls et al., 2005). The
thick lines in Fig. 5 display the isocontours of the corresponding
likelihood which forms a non-convex valley in the complex plane.
Assuming Goodman statistics would yields circular isocontours in
this figure and is obviously a bad approximation of the true crite-
rion in that case. To improve on Goodman model while avoiding
non-convex criteria, Meimon et al. (2005a) have proposed qua-
dratic convex approximations of the true likelihood (see Fig. 5)
and have shown that their so-called local approximation yields
the best results, notably when dealing with low signal to noise
data. For a complex datum dk = qk exp(iuk), the local quadratic
approximation writes:

fdataðx; gÞ ¼
X

k

Reðek e�iukÞ2

r2
==;k

þ Imðek e�iuk Þ2

r2
?;k

( )
ð51Þ
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where ek = dk �mk(x;g) is the complex residual and the variances
along and perpendicular to the complex datum vector are:

r2
==;k ¼ VarðqkÞ ð52Þ

r2
?;k ¼ q2

k VarðukÞ: ð53Þ

Note that the Goodman model is retrieved when
q2

k VarðukÞ ¼ VarðqkÞ.

2.9. Maximum entropy methods

In statistical physics, the entropy is the logarithm of the proba-
bility log Pr(x). Hence, minimizing fprior(x) / �log Pr(x) under the
constraint of fitting the data can be interpreted as a maximum en-
tropy method (MEM for short). In words, MEM is Bayesian approach
taken literally. It directly follows from the Sections 2.6 and 2.7 that
the MEM solution is then given by minimizing a criterion like the
one in Eq. (46). There is nothing specific here: in particular the
penalty fprior(x) (sometimes called negentropy) can take any mathe-
matical form. However, the term maximum entropy methods is
generally used for non-quadratic prior penalties. Narayan and
Nityananda (1986) reviewed MEM for radio-interferometry imag-
ing and argued that only non-quadratic priors can interpolate
missing Fourier data. Le Besnerais et al. (2008) have nonetheless
shown that good image reconstruction can be achieved from inter-
ferometric data using a simple quadratic prior whereas strictly
accounting for positivity. Indeed, the key point for good Fourier
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Fig. 6. Image reconstruction with various types of regularization. From top-left to bo
(FWHM � 15 mas); (b) reconstruction with a quadratic regularization given by Eq. (93) a
regularization as in Eq. (95); (d) reconstruction with maximum entropy regularization as
the phase closures.
interpolation is the compactness of the brightness distribution
which is imposed by the positivity as it plays the role of a floating
support (e.g. see Fig. 6b).

One of the most popular prior penalty usually considered for
MEM is:

fpriorðxÞ ¼
X

j

�xj � xj þ xj logðxj=�xjÞ

 �

ð54Þ

where �x is the default image, that is, the one which would be recov-
ered in absence of any data. The default image can be taken as being
a flat image, an image previously restored under a stronger prior
(perhaps at a lower resolution), etc. When strict normalization ap-
ply for the sought image (and providing the prior image is normal-
ized), the negentropy simplifies to:

fpriorðxÞ ¼
X

j

xj logðxj=�xjÞ: ð55Þ

Omitting the prior image and to give an idea of the zoological diver-
sity in the world of MEM’s, the following other non-quadratic
negentropy were also considered:

fpriorðxÞ ¼ �
X

j

logðxjÞ: ð56Þ

or

fpriorðxÞ ¼ �
X

j

ffiffiffiffi
xj

p
ð57Þ
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ttom-right: (a) original object smoothed to the resolution of the interferometer
nd which imposes a compact field of view; (c) reconstruction with edge-preserving
in Eq. (54). All reconstructions by algorithm MIRA and from the powerspectrum and
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Except for Eq. (57), these MEM penalties forbid negative pixel val-
ues (providing the prior map is non-negative): there is no needs
to explicitly impose positivity. This is sometimes put forward by
the proponents of these methods.

Also note that, these MEM penalties are separable which means
that they do not depend on the ordering of the pixels. To explicitly
enforce some correlation between close pixels in the sought image
(hence, some smoothness), the prior can be chosen to depend on the
sought image. For instance: �x ¼ P � x where P is some averaging/
smoothing linear operator. This type of floating prior has been used
to loosely enforce constraints such as radial symmetry (Horn,
1985).

Once chosen an expression for the negentropy and a value for l
(or for gdata), image reconstruction is carried by minimizing the
joint criterion in Eq. (46). This task has a number of issues as the
problem is highly non-linear and as there may be a very large num-
ber of unknowns (as many as there are pixels). Various methods
have been proposed, but the most effective algorithm is due to
Skilling and Bryan (1984) who sought for the solution by a non-lin-
ear optimization in a local sub-space of search directions with the
Lagrange multiplier l tuned on the fly to match the constraint set
by gdata.
2.10. CLEAN method

The proponents of maximum entropy methods claim that only
non-linear6 regularization (i.e. such as the entropy) can helps to
solve for the degeneracies in image synthesis problem; that is,
interpolate the complex visibility for missing spatial frequencies
(Narayan and Nityananda, 1986). In fact, the necessary condition
for an effective regularization in this context is not so much to avoid
noise amplification (though some kind of smoothness constraint
may be necessary to avoid excessive superesolution, i.e. extrapolating
the u–v coverage) but mostly to set constraints so that Fourier inter-
polation of missing frequencies is done smoothly. Since smoothness
along spatial frequencies is qualitatively equivalent to compactness
in the image plane, a means to achieve smooth Fourier interpolation
is to favor compactness of the restored image. This is explicitly the
underlying idea in CLEAN algorithm (Högbom, 1974) which attempts
to obtain an image which is compatible with the data and is made of
a minimal number of point-like sources.

CLEAN method is of the family of the matching pursuit algorithms,
it is an iterative method which works as follows. Given the data in
the form of a dirty image, the location of the brightest source
needed to best explain the data is searched. The sought image is
updated by a fraction of the intensity of this component and this
fraction times the dirty beam is subtracted from the dirty image.
The procedure is repeated for the new residual dirty image which
is searched for evidence of another point-like source. After
convergence, (when the level of the residuals becomes smaller
than a given threshold set from the noise level), the image is con-
volved with the clean beam (usually a Gaussian shaped PSF) to have
a resolution in agreement with the extension of the u–v coverage.
Obviously CLEAN is aimed at restoring images mainly made of point-
like sources, star clusters for instance. However, once most
compact sources have been removed, the residual dirty image is
essentially due to the remaining extended sources which may be
smooth enough to not be too distorted by the convolution by the
dirty beam. The residual dirty image is therefore added to the clean
image to produce a final image consisting in compact sources
(convolved by the clean beam) plus smooth extended components.
6 Meaning non-quadratic here. The minimum of a quadratic penalty being obtained
by solving a linear system of equations (the so-called normal equations, see Section
2.5), the corresponding optimization problem is sometimes categorized as being a
linear problem, which is rather confusing for non-specialists.
Schwarz (1978) has formalized CLEAN and studied its convergence
to show that it is equivalent to an iterative deconvolution with
early stopping.

In the general framework proposed in this tutorial, it is possible
to emulate the CLEAN method by using a specific regularization pen-
alty which imposes to have the minimum number of significant
pixels in the restored image. First, we observe that the ‘0-norm
of x:

kxk0 ¼
X

j

c0ðxjÞ with : c0ðxÞ ¼
1 if x – 0
0 if x ¼ 0

�
ð58Þ

is simply equals to the number of non-zero values in x. Hence, using
the ‘0-norm as a regularization:

fpriorðxÞ ¼ kxk0 ð59Þ

leads to seek for the image compatible with the data and which has
the minimum number of significant pixels. Using the ‘0-norm as a
regularization criterion is formally correct but has a profound im-
pact on the strategy to solve the image restoration problem. Indeed,
the ‘0-norm is not a smooth function and direct minimization of
f(x;l) in Eq. (46) by a general purpose optimization algorithm is
not possible; special methods must be devised (the matching
pursuit is a possibility). To have an idea of how difficult is the prob-
lem, first note that the number P = kxk0 of bright pixels plays the
role of the tuning parameter, then realize that seeking for the min-
imum ‘0-norm solution involves solving the following combinato-
rial problem: Which are the significant (non-zero) pixels? Owing to
the number of parameters, this is a very difficult task as there are

N

P

� 

¼ N!

ðN � PÞ!P!
;

different ways to choose P non-zero pixels out of N pixels and, for
typical values of N an P, this is a really huge number.7

Compressive sensing is a signal processing approach aimed at
dealing with sparse data. One of the nice results demonstrated
by compressive sensing is that, in most practical cases, the mini-
mum ‘0-norm solution can be obtained by using an ‘1-norm regu-
larization (Candes et al., 2006):

fpriorðxÞ ¼ kxk1 ¼
def X

j

jxjj: ð60Þ

The great advantage is that, apart for a singularity at xj = 0, the
‘1-norm is a continuous function which is much easier to minimize
than the ‘0-norm. However note that using an ‘1 norm regulariza-
tion has no effect when combined with positivity and normalization
constraints. The algorithm of Giovannelli and Coulais (2005) (see
Section 2.11) can be seen as an improved CLEAN method which is
explicitly based on the minimization of a criterion.

2.11. Other methods

This section briefly summarizes promising (though less popu-
lar than MEM and CLEAN) image reconstructions methods that
have been proposed to solve the image synthesis problem in
astronomy.

Wakker and Schwarz (1988) improved over CLEAN by using a
multi-resolution approach where two maps (at low and high reso-
lution) are simultaneously build by a CLEAN-like algorithm. Starck
et al. (1994) have generalized this approach by using a wavelet
expansion to describe the image – which could be formally
expressed in terms of Eq. (10) – and achieved multiresolution
7 For instance, for a 128 � 128 pixel image, there are �5.7 � 102310 possibilities to
choose the location of 10% significant pixels and only (!) �2 � 10397 possibilities to
choose the location of 1% significant pixels.
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deconvolution of the interferometric data by a matching pursuit
algorithm similar to the CLEAN method applied to the wavelet coef-
ficients. Their solution satisfies positivity and support constraints.

The WIPE method by Lannes et al. (1997) is a regularized fit of
the interferometric data under positivity and support constraints.
The synthesized image is given by Eq. (11) (using an equally-
spaced grid) and WIPE explicitly set the effective resolution by
means of the building block function b(Dh) (the so-called neat
beam) with an additional penalty term to avoid spurious high fre-
quencies. The image parameters are estimated by WIPE as the ones
that minimize:

fWipeðxÞ ¼
X

k

wkjb̂kdk � ðA � xÞkj
2 þ

X
k;jmk j>meff

jðF � xÞkj
2 ð61Þ

where d are the calibrated complex visibility data, b̂ is the Fourier
transform of the neat beam, L is the list of observed frequencies
(cf. Section 2.2), meff is an effective cutoff frequency (which depends
on the extension of the u–v coverage: meff > supm2Ljmj), F is the Fou-
rier transform operator, A is the model matrix given by Eq. (14), i.e.
accounting for the sub-sampled Fourier transform and the neat
beam, and w are the weights:

wk ¼
1=r2

kP
k01=r2

k0
ð62Þ

where r2
k ¼ jb̂kj2VarðReðdkÞÞ ¼ jb̂kj2VarðImðdkÞÞ, i.e. Goodman

approximation is assumed. In the criterion minimized by WIPE, Eq.
(61), we can identify a likelihood term, cf. Eq. (50), and a regulariza-
tion term to cope with the ill-posedness of the problem, there is no
hyper parameter to tune the level of this latter term. Finally, WIPE

performs the optimization by a conjugate gradient search with a
stopping criterion derived from the analysis of the conditioning of
the regularized problem. This analysis is built up during the
iterations.

Recently, Giovannelli and Coulais (2005) have proposed a kind
of multi-resolution method which restore an image x = xe + xp

made of two maps: xe for extended structures and xp for point-like
components. The map xe is regularized by imposing smoothness
whereas the map xp is regularized by imposing sparseness. With
additional strict positivity and (optionally) support constraints, it
turns out that the two kinds of regularization can be coded by qua-
dratic penalties. Their method amounts to minimize the following
penalty:

fmixðxe; xpÞ ¼ kd� S � F � ðxe þ xpÞk2 þ kscT � xp þ �skxpk2

þ kckD � xek2 þ �mðcT � xeÞ2 ð63Þ

where d are the calibrated complex visibilities, S and F are the sub-
sampling and Fourier transform operators (cf. Section 2.5), ks, �s, kc

and �m are the tuning parameters of the regularization terms, D is a
local finite difference operator, for instance (in 1-D to simplify the
notation):

kD � xk2 ¼
X

n

ðxnþ1 � xnÞ2 ð64Þ

and c = (1,1,. . .,1)T is a vector with all components set to one, hence:

cT � x ¼
X

n

xn: ð65Þ

There are 4 tuning parameters of the regularization terms in Eq.
(63): ks P 0 and �s > 0 control the sparseness of xp, kc > 0 controls
the level of smoothness in the extended map xe, and �m > 0 (or
�m P 0 if there is a support constraint) insures strict convexity
of the regularization with respect to xe. Finally, Giovannelli and
Coulais (2005) extensively use circulant approximations to imple-
ment a very fast constrained optimization method targeted at
solving their problem.
3. Image synthesis in spite of turbulence

3.1. Complex OTF due to turbulence

Without a phase reference and because of the atmospheric tur-
bulence, it is not possible to completely calibrate the instantaneous
transmission gains of an interferometer. The OPD errors due to
atmospheric turbulence follow independent Gaussian distribu-
tions. Hence, during mth exposure (which is much longer than
the typical evolution time of the turbulence), the mean complex
throughput for jth telescope is:

hgjðtÞim ¼ gj;m e�
1
2r

2
/ ; ð66Þ

where r2
/ ¼ ð2p=kÞ2VarðdÞ is the variance of the phase and gj,m =

exp(i/j,m) with /j,m = (2p/k) hdj(t)im the mean phase during the
exposure. To simplify the discussion to come, it has been assumed
that the variance of the OPD is the same for all telescopes and expo-
sures and that the interferometer is perfect in other respects (static
aberrations and geometrical OPD are exactly compensated and
amplitude attenuations are properly calibrated). Then, Eq. (66)
comes directly from the well known expectation:

hei/i ¼ eih/i e�
1
2r

2
/ ; ð67Þ

for a phase which follows a Gaussian distribution: / � Nðh/i;r2
/Þ.

When the variance r2
/ is small (as assumed in Section 2), Eq. (66)

yields Eq. (6). At least for telescopes very distant from each other,
the OPD errors due to atmospheric turbulence are independent
and the mean short exposure OTF for the complex visibility mea-
sured by j1th and j2th telescopes becomes:

gH

j1
ðtÞgj2

ðtÞ
D E

m
¼ gj1

ðtÞ
D E

m
gj2
ðtÞ

D E
m
¼ gH

j1 ;m
gj2 ;m

e�r
2
/ : ð68Þ

In Eq. (66) and (68), the mean complex throughputs have an
unknown phase (which depends on telescope and exposure time)
and an amplitude set by the phase variance which scales as the
OPD variance times k�2. At short wavelengths (optical), the phase
variance exceeds a few squared radians and the mean OTF during
exposures is negligible. The object’s complex visibility cannot be di-
rectly measured and other estimators that are insensitive to this ef-
fect must be measured (cf. Section 3.3). On the other hand, at long
wavelengths (radio), the phase variance is small, expð�r2

/Þ ’ 1, it
however remains the problem of deriving the unknown phasors
gj,m. This issue can be solved by means of self-calibration (cf. Section
3.2).
3.2. Self-calibration

For slow or weak turbulence, the variance of phase errors dur-
ing the exposure time is small and the complex throughputs are al-
most equal to unknown phasors. Then, the likelihood term writes:

fdataðx; gÞ ¼
X

k

X
ðj1 ;j2 ;mÞ2Bk

wj1 ;j2 ;m Vdata
j1 ;j2 ;m

� gH

i1 ;m
gj2 ;m

VkðxÞ
��� ���2 ð69Þ

where

gj;m ’ ei/j;m : ð70Þ

The problem is to not only derive the image, that is, the parameters
x, but also the unknown phases /j,m. Since the complex throughputs
and the sought image are statistically independent, standard Bayes-
ian analysis (cf. Section 2.6) yields the following problem to solve:

ðxMAP; gMAPÞ ¼ arg min
x;g

fdataðx; gÞ þ limgf img
priorðxÞ þ lgainf gain

priorðgÞ
n o

ð71Þ
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where limgf img
priorðxÞ and lgainf gain

priorðgÞ are the regularization terms for
the image parameters and for the complex throughputs, respec-
tively. The latter can be derived from prior statistics about the
turbulence (Roddier, 1981). Strict constraints such as the positivity
of the image may have to be taken into account in Eq. (71). In addi-
tion to the issue of proper setting of the priors, direct minimization
of the criterion in Eq. (71) is a difficult task because: (i) the
problem is no longer convex with respect to the complete set of
parameters (x, g) (hence global optimization is required); (ii) the
parameters are heterogeneous and scale very differently which
adds to the bad conditioning of the problem (hence slowing down
the convergence). Fortunately, to solve for the first issue, a simpler
strategy than true global optimization has proven effectiveness
(and incidentally also discards the second issue). This method is
based on the following insights. First, given the data and the com-
plex throughputs, robust image reconstruction can be performed
by one of the image synthesis methods described in Section 2.
Second, given the data and an estimate of the object brightness
distribution, there are more constraints than unknown when seek-
ing for the complex gains. This problem, although non-convex,
may be easier to solve. These considerations suggest an alternate
scheme to find both the image and the complex gains. This ap-
proach is called self-calibration because it uses the current estimate
of the image as a reference source to calibrate the complex gains
(the sought object serving itself as a reference source). The self-
calibration algorithm writes:

Step 1. Initialization. Choose regularization (the fprior’s and the l’s)
and initial image x(0); set n = 1.

Step 2. Self-calibration step. Given the image x(n�1), find the best
complex throughputs g(n) by solving:
gðnÞ ¼ arg min
g

fdata xðn�1Þ; g
� �

þ lgainf gain
priorðgÞ

n o
:

Step 3. Image reconstruction step. Apply image synthesis algorithm
to recover a new image estimate given the data and the
complex throughputs:
xðnÞ ¼ arg min
x

fdata x; gðnÞ
� �

þ limgf img
priorðxÞ

n o
:

Step 4. Convergence test. If algorithm has converged, terminate
with solution x(n); otherwise; increment n and loop to Step
2.

It is worth noting that any image synthesis methods (e.g. C
LEAN, MEM, etc. described in Section 2) can be used to perform
the image reconstruction step. Also, by exchanging the order of
the self-calibration and image reconstruction steps, the algorithm
can be started with given initial gains g(0) instead of an initial im-
age x(0). In general, the self-calibration step is non-convex, it is
however usually solved by means of local minimization starting
with the previous estimate of the complex throughputs (more
on this below). Even if the 2 steps, self-calibration and image
reconstruction, are both convex, the global problem is however
non-convex. Hence, the final solution depends on algorithm
initialization.

Self-calibration was initially proposed by Readhead and Wilkin-
son (1978) to derive missing Fourier phase information from phase
closure data, the technique was later improved by Cotton (1979).
Schwab (1980) used self-calibration to estimate the complex gains
g by minimizing a criterion similar to fdata(x,g) in Eq. (48) by means
of non-linear optimization. Schwab’s self-calibration was further
improved by Cornwell and Wilkinson (1981) who introduced some
priors for the complex gains, that is, the term lgainf gain

priorðgÞ in the
penalty minimized in Step 2 above. However, for most authors,
no prior about the throughputs is assumed, hence lgain = 0. For
more conventional imaging problems such as deconvolution of
blurred images, the so-called blind deconvolution method (Campisi
and Egiazarian, 2007) is very similar to the objective of self-calibra-
tion and is used to improve the quality of degraded images when
the point spread function is unknown.

Although, following Schwab (1980), fdata(x,g) in Eq. (48) can be
minimized with respect to g by a general non-linear optimization
algorithm (Nocedal and Wright, 2006; Bonnans et al., 2006), the
self-calibration step can be solved by a very simple yet effective
algorithm proposed by Lacour et al. (2007) and which can be de-
rived as follows. The optimal complex gains are a stationary point
of fdata in Eq. (48), hence:

@fdataðx; gÞ
@gj;m

¼ 0

()
X

ðj0 ;kÞ: ðj0 ;j;mÞ2Bk

wj0 ;j;m Vdata
j0 ;j;m � gH

j0 ;mgj;mVk

� 	
gj0 ;mVH

k

þ
X

ðj0 ;kÞ:ðj;j0 ;mÞ2Bk

wj;j0 ;m Vdata
j;j0 ;m

H � gj;mgH

j0 ;mVH

k

� 	
gH

j0 ;mVk ¼ 0;

which, factorizing out gj, m, can be re-expressed in the form of a set
of fixed point equations with respect to the complex gains:

gj;m¼
P
ðj0 ;kÞ:ðj0 ;j;mÞ2Bk

wj0 ;j;mgj0 ;mVH

k Vdata
j0 ;j;mþ

P
ðj0 ;kÞ:ðj0 ;j;mÞ2Bk

wj;j0 ;m gH

j0 ;mVkVdata
j;j0 ;m

HP
ðj0 ;kÞ:ðj0 ;j;mÞ2Bk

wj0 ;j;mjgj0 ;mj
2jVkj2þ

P
ðj0 ;kÞ:ðj0 ;j;mÞ2Bk

wj;j0 ;mjgj0 ;mj
2jVkj2

:

ð72Þ

Using some initial guess for the complex gains in the right hand side
of Eq. (72) provides a new estimate (the left hand side) of the gains.
This operation can be iterated until convergence which occurs after
a few iterations (Lacour et al., 2007). Intuitively, one can recognize
in the right hand side of Eq. (72) a weighted sum of estimates of the
gain gj, m providing that all the other gains are known. This kind of
algorithm is very similar to the Gauss–Seidel iterative method for
solving a set of linear equations.

3.3. Measurements in optical interferometry

For fast or strong turbulence, the mean transmission for the
complex visibilities during an exposure is negligible. There are
two possibilities to overcome this problem. The first solution con-
sists in integrating non-linear estimators that are insensitive to
telescope-wise phase errors. This requires high acquisition rates
(�1000 Hz in K-band) and involves special data processing but
otherwise no special instrumentation. We discuss this solution in
the following. A second solution is to compensate the OPD errors
in real time thanks to fast delay lines and to a simultaneous phase
reference. This requires a dedicated instrumentation and that a
bright reference source be available in the vicinity of the observed
object (e.g. Prima facility at VLTI, Delplancke et al., 2003). The use
of a phase reference is also needed when observing faint objects.

To overcome loss in visibility transmission due to fast varying
OPD errors, current optical interferometers integrate the
powerspectrum:

Sj1 ;j2 ;m ¼ hjVj1 ;j2 ðtÞj
2im ¼ gH

j1
ðtÞgj2

ðtÞbIðmj1 ;j2 ðtÞÞ
��� ���2� �

m

¼ gj1
ðtÞ

��� ���2� �
m

gj2
ðtÞ

��� ���2� �
m

bIðmj1 ;j2 ðtÞÞ
��� ���D E2

¼ qj1 ;m
qj2 ;m
jbIðmj1 ;j2 ;mÞj

2
; ð73Þ

where it has been assumed that the complex throughputs are inde-
pendent (and that j1 – j2), the mean frequency mj1 ;j2 ;m is defined in
Eq. (8), and

qj;m ¼ hjgjðtÞj
2im ð74Þ
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is the mean squared modulus of the complex throughput of jth tele-
scope during mth exposure. By construction, the mean squared
moduli of the complex throughput are insensitive to the phase
errors and hence is the powerspectrum. Unlike that of the complex
visibility, the transfer function qj1 ;m

qj2 ;m
of the powerspectrum is

not negligible. This transfer function can be estimated by
simultaneous photometric calibration and, to compensate for
remaining static effects, from the powerspectrum of a reference
source (a so-called calibrator). This means that the object power-

spectrum jbIðmj1 ;j2 ;mÞj
2 can be measured by Sj1 ;j2 ;m in spite of phase er-

rors due to the turbulence.
To obtain Fourier phase information (which is not provided by

the powerspectrum), the bispectrum of the complex visibilities is
measured:

Bj1 ;j2 ;j3 ;m ¼ hVj1 ;j2 ðtÞVj2 ;j3 ðtÞVj3 ;j1 ðtÞim
¼ qj1 ;m

qj2 ;m
qj3 ;m

bIðmj1 ;j2 ;mÞbIðmj2 ;j3 ;mÞbIðmj3 ;j1 ;mÞ; ð75Þ

where it has been assumed that the complex throughputs are inde-
pendent (and that j1,j2 and j3 denote three different telescopes). As
for the powerspectrum, the transfer function qj1 ;m

qj2 ;m
qj3 ;m

of the
bispectrum can be calibrated. However, since this transfer function
is real, it has no effect on the phase of the bispectrum, the so-called
phase closure, which is equal to that of the object alone:

bj1 ;j2 ;j3 ;m
¼ argðBj1 ;j2 ;j3 ;mÞ ¼ argðbIðmj1 ;j2 ;mÞ bIðmj2 ;j3 ;mÞbIðmj3 ;j1 ;mÞÞ: ð76Þ

The (calibrated) powerspectrum provides measurements of the
modulus of the object’s complex visibility whereas the bispectrum
(or the phase closure) provides information about the phase of
the complex visibility. However, some phase information is missing.
In effect, from all the interferences between T telescopes (in a non
redundant configuration), T (T � 1)/2 different spatial frequencies
are sampled but the phase closure only yields (T � 1) (T � 2)/2 lin-
early independent phase estimates. For a small number of tele-
scopes, the measurable phase information is much more sparse
than the modulus information. In particular, there is no direct mean
to derive estimates of the object complex visibility at the sampled
frequencies given only the powerspectrum and the bispectrum (or
the phase closure). In the limit of a very large number of telescopes
the ratio of missing information is reduced. However, at least the
information of absolute position of the observed object is not
available.

In practice, measuring the powerspectrum and the bispectrum
involves measuring the instantaneous complex visibilities (that
is, for a very short integration time compared to the evolution of
turbulence) and averaging their powerspectrum and bispectrum
over the short exposure time (which is short enough to consider
that the observed spatial frequencies remain unchanged by Earth
rotation). Being non-linear functions of noisy variables, the power-
spectrum and the bispectrum are biased. The biases are however
easy to estimate and discard. To simplify the description of the
algorithms, we consider in what follows that the unbiased and cal-
ibrated powerspectrum and bispectrum are available as input data
for image reconstruction, hence:

Sdata
j1 ;j2 ;m

¼ jbIðmj1 ;j2 ;mÞj
2 þ error; ð77Þ

Bdata
j1 ;j2 ;j3 ;m

¼ bIðmj1 ;j2 ;mÞbIðmj2 ;j3 ;mÞbIðmj3 ;j1 ;mÞ þ error: ð78Þ

where the error terms account for noise and model error but are
assumed to be centered (remaining biases, if any, are negligible
with respect to the standard deviation of the errors). Note that
the spatial frequencies involved in the bispectrum make a closed
triangle:

mj1 ;j2 ;m þ mj2 ;j3 ;m þ mj3 ;j1 ;m ¼ 0:
Instead of the bispectrum data, we can consider the phase closure
data:

bdata
j1 ;j2 ;j3 ;m

¼ arcðuðmj1 ;j2 ;mÞ þuðmj2 ;j3 ;mÞ þuðmj3 ;j1 ;mÞ þ errorÞ; ð79Þ

where uðmÞ ¼ arg½bIðmÞ� is the phase of the Fourier transform of the
object brightness distribution and arc() returns it argument
wrapped in the range (�p, + p].

Given the (non-linear) relationships between the image model
and the data, an image reconstruction algorithm can be designed
following the inverse problem approach (cf. Sections 2.6 and 2.7)
providing we derive analytical expressions for the terms fdata and
fprior which penalize the discrepancy of the sought image with the
data and with the priors, respectively. The same regularization
penalties as in Section 2 can be used for the prior term and we dis-
cuss below the different possibilities for the fdata penalty.
3.4. Likelihood terms

In principle, statistics of the powerspectrum, the bispectrum,
and phase closure yield analytical expressions for the likelihood
term fdata. A priori their statistics cannot be Gaussian: the power-
spectrum is a positive quantity, the phase closure is wrapped in
the range (�p, + p], etc. However, most algorithms make use of
quadratic penalties with respect to the measurements which, in a
strict Bayesian viewpoint, implies Gaussian statistics. Another
assumption generally made is the independence of the measure-
ments which leads to separable penalties as those given in Eqs.
(80), (82), (84), and (85) below.

With this approximation, the penalty with respect to the pow-
erspectrum data writes:

f ps
dataðxÞ ¼

X
m;j1<j2

Sdata
j1 ;j2 ;m

� Smodel
j1 ;j2 ;m

ðxÞ
� 	2

Var Sdata
j1 ;j2 ;m

� 	 ; ð80Þ

where, according to Eq. (77), the model of the powerspectrum
reads:

Smodel
j1 ;j2 ;m

ðxÞ ¼ bIðmj1 ;j2 ;m; xÞ
��� ���2: ð81Þ

To account for phase wrapping and for the variable quality in phase
measurements, Haniff (1991) has proposed to define the penalty
with respect to the phase closure data as:

f cl
dataðxÞ ¼

X
m;j1<j2<j3

arc2 bdata
j1 ;j2 ;j3 ;m

� bmodel
j1 ;j2 ;j3 ;m

ðxÞ
� 	

Var bdata
j1 ;j2 ;j3 ;m

� 	 : ð82Þ

where, according to Eq. (79), the model of the phase closure reads:

bmodel
j1 ;j2 ;j3 ;m

ðxÞ ¼ uðmj1 ;j2 ;m; xÞ þuðmj2 ;j3 ;m; xÞ þuðmj3 ;j1 ;m; xÞ: ð83Þ

This penalty is however not continuously differentiable with
respect to the image parameters, which can prevent the conver-
gence of optimization algorithms. To overcome this problem, the
complex phasors can be used instead (Thiébaut, 2008):

f cl
dataðxÞ ¼

X
m;j1<j2<j3

eibdata
j1 ;j2 ;j3 ;m � eibmodel

j1 ;j2 ;j3 ;m
ðxÞ

��� ���2
Var bdata

j1 ;j2 ;j3 ;m

� 	 ; ð84Þ

which, in the limit of small phase closure errors, is approximately
equal to the penalty in Eq. (82).

If the bispectrum data are to be used, there is the additional dif-
ficulty to deal with complex data. Assuming isotropic distribution
of errors for the real and imaginary parts of the bispectrum, the fol-
lowing penalty with respect to the bispectrum data can be derived:
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f bisp
dataðxÞ ¼

X
m;j1<j2<j3

wbisp
j1 ;j2 ;j3 ;m

Bdata
j1 ;j2 ;j3 ;m

� Bmodel
j1 ;j2 ;j3 ;m

ðxÞ
��� ���2: ð85Þ

where, according to Eq. (78), the model of the bispectrum writes:

Bmodel
j1 ;j2 ;j3 ;m

ðxÞ ¼ bIðmj1 ;j2 ;m; xÞbIðmj2 ;j3 ;m; xÞbIðmj3 ;j1 ;m; xÞ; ð86Þ

and, it follows from the assumption of isotropy that, the weights in
Eq. (85) are:

wbisp
j1 ;j2 ;j3 ;m

¼ Var Bdata
j1 ;j2 ;j3 ;m

� 	�1
; ð87Þ

with Var Bdata
j1 ;j2 ;j3 ;m

� 	
¼def Var Re Bdata

j1 ;j2 ;j3 ;m

� 	� 	
¼ Var Im Bdata

j1 ;j2 ;j3 ;m

� 	� 	
. This

is similar to the Goodman (1985) prescription for the complex
visibility.

Depending on which set of data is available, and assuming that
the different type of data have statistically independent errors, the
total penalty with respect to the data is simply a sum of some of
the penalties given by Eq. (80), (82), (84) and/or Eq. (85). For in-
stance, if one wants to fit the powerspectrum and the phase clo-
sure data, then:

fdataðxÞ ¼ f ps
dataðxÞ þ f cl

dataðxÞ: ð88Þ

Note that existing algorithms can impose specific expressions for
fdata(x) and fprior(x).

3.5. Image reconstruction from the powerspectrum and bispectrum
data

Most algorithms specifically designed to cope with optical
interferometry data can be formally described in the inverse prob-
lem framework derived so far. That is, they can be specified in
terms of a criterion to optimize, perhaps under some strict con-
straints, and an optimization strategy. The algorithms (given in
alphabetical order) which are summarized in what follows were
also the competitors of the three Image Beauty Contests (Lawson
et al., 2004; Lawson et al., 2006; Cotton et al., 2008) which pro-
vided a comparison of their performances on the basis of realistic
simulated data provided in the form of OI-FITS files (Pauls et al.,
2005).

3.5.1. BSMEM algorithm
BSMEM was developed by Buscher (1994), the algorithm makes

use of a maximum entropy method (cf. Section 2.9) to regularize
the problem of restoring an image from the measured bispectrum
(hence its name). From the quite informal description of the algo-
rithm (Buscher, 1994; Lawson et al., 2006), it can be guessed that
BSMEM regularization penalty is given by Eq. (54) and that the
measurements (powerspectra, bispectrum amplitudes, and phase
closures) are independently exploited by means of a sum of likeli-
hood penalties similar to those in Eqs. (80), (82), and (85). The opti-
mization engine in BSMEM is MEMSYS which implements the
strategy proposed by Skilling and Bryan (1984). The default image
in BSMEM is derived from a first reconstruction with, e.g. a uniform
prior. Because it makes no attempt to directly convert the data into
complex visibilities, a strength of BSMEM is that it can handle any
types of data sparseness (such as missing closures). Thus, in prin-
ciple, BSMEM could be used to restore images when Fourier phase
data are completely missing (see Fig. 8).

3.5.2. The building block method
The building block method (Hofmann and Weigelt, 1993) was

developed for reconstructing images from data such as the bispec-
trum obtained by means of speckle or long baseline interferometry.
The building block method is iterative, the objective of each step
being to reduce a cost function f bisp
data equals to that in Eq. (85) with

weights set to a constant or to:

wbisp
j1 ;j2 ;j3 ;m

ðxÞ ¼
Bdata

j1 ;j2 ;j3 ;m
� Bmodel

j1 ;j2 ;j3 ;m
ðxÞ

��� ���2
Bdata

j1 ;j2 ;j3 ;m
� Bmodel

j1 ;j2 ;j3 ;m
ðxÞ

��� ���2 þ Var Bdata
j1 ;j2 ;j3 ;m

� 	 ; ð89Þ

with Var Bdata
j1 ;j2 ;j3 ;m

� 	
. Those weights therefore depends on the sought

parameters x and, according to Hofmann and Weigelt (1993), the
particular expression in Eq. (89) was motivated by Wiener filter-
ing. . . The regularization is insured by a sparseness constraint and
minimization of the penalty is achieved by a matching pursuit algo-
rithm. The image is given by the building block model in Eq. (11)
and, at kth iteration, the new image I[k](h) is obtained by adding a
new building block at location h[k] with a weight a[k] to the previous
image:

I½k�ðhÞ ¼ I½k�1�ðhÞ þ a½k� bðh� h½k�Þ ð90Þ

or, if strict normalization is applied:

I½k�ðhÞ ¼ ð1� a½k�ÞI½k�1�ðhÞ þ a½k�bðh� h½k�Þ: ð91Þ

The weight and location of the new building block is derived by
minimizing the criterion f bisp

data with respect to these parameters.
Strict positivity and support constraint can be (trivially) enforced
by limiting the possible values for a[k] and h[k], respectively. To im-
prove convergence, the method allows to remove building blocks
(that is, add blocks with negative weights). A number of improve-
ments have been implemented to speed up the computation, e.g.
by adding/removing more than one block at a time. To avoid super
resolution artifacts, the final image is convolved with a smoothing
function with size set according to the spatial resolution of the
instrument. The building block method is very similar to the CLEAN

method but designed for a different kind of data.

3.5.3. MACIM algorithm
MACIM (for MArkov Chain IMager) was developed by Ireland

et al. (2008) and implements a global optimization strategy in a
strict Bayesian framework. As explained in Section 2.6, the proba-
bility of the model given the data writes:

PrðxjdÞ / exp �1
2

fdataðxÞ �
l
2

fpriorðxÞ
� 


;

where the likelihood depends on the kind of data considered (pow-
erspectrum and bispectrum). MACIM implements MEM regulariza-
tion and a specific regularizer which favor large regions of dark
space in-between bright regions. The penalty for this latter regular-
ization is the sum of all pixel boundaries with zero flux on either
side of the pixel boundary. MACIM attempts to maximize Pr(xjd)
by a simulated annealing algorithm with the Metropolis sampler.
Although maximizing Pr(xjd) is the same as minimizing fdata(x) +
l fprior(x), the use of probabilities is required by the Metropolis
sampler to accept or reject the image samples. Theoretically, strict
Bayesian point of view can also be exploited to derive, in a statisti-
cal sense, the values of the hyper-parameters (such as l) and some
a posteriori information (such as the significance level of the image).
In principle, simulated annealing is able to solve the global optimi-
zation problem of maximizing Pr(xjd). However, the convergence of
this kind of Monte-Carlo method can be very slow and depends on
the parameters which set the temperature reduction law.

3.5.4. Mira algorithm
MIRA (Thiébaut, 2008) explicitly defines the sought image as the

solution of a constrained optimization problem as the one in Eq.
(47). To compute the model of the complex visibilities from the
current image, MIRA uses the exact linear transform, Eq. (14), or
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Fourier interpolation (cf. Section 2.3) to speed up computations or
to deal with large data sets. Minimization is carried on by a limited
variable memory method (based on BFGS updates) with bound
constraints (for the positivity) (Thiébaut, 2002). Since this method
does not implement any global optimization strategy, the image
restored by MIRA depends on the initial image. The strict normali-
zation and positivity constraints are implemented by introducing
the hidden variables z, the image parameters being given by the
non-linear change of variables:

xn ¼
znP
n0zn0

ð92Þ

which insure that
P

nxn ¼ 1. The joint penalty in Eq. (46) is then
minimized with respect to z and subject to zP0 which also insures
positivity of the image. MIRA is written in a modular way: basically
any type of data can be taken into account providing a function that
computes the corresponding penalty and its gradient with respect
to the complex visibility is coded, currently complex visibility, pow-
erspectrum and closure-phase data are possible via likelihood terms
given by Eqs. (80) and (84). Also many different regularizers are
built into MIRA (negentropy, quadratic of edge-preserving smooth-
ness, total variation, etc.) and provisions are made to implement
custom priors. For instance, a compactness prior is achieved by a
very simple quadratic penalty:

fpriorðxÞ ¼
X

n

wprior
n x2

n; ð93Þ

where the weights are increasing with the distance to the optical
axis thus favoring structures concentrated within the center of
the field of view. It has been shown (Le Besnerais et al., 2008) that,
in the absence of any data, the default image yielded by this prior is:
�xn / 1=wprior

n , where the factor comes from the normalization
requirement. For instance:

wpriorðhÞ ¼ 1þ h2
1 þ h2

2

4 C2 ; ð94Þ

yields a default image with radial symmetry and Lorentzian shape
with full width at half minimum (FWHM) equals to C. Although
simple, this regularizer can be very effective as shown by Fig. 6.

Since MIRA accounts for any available data, it can cope with
missing data, in particular, it can be used to restore an image given
only the powerspectrum (i.e. without any Fourier phase informa-
tion) with at least a 180� orientation ambiguity. An example of
such a reconstruction with no phase data is shown in Fig. 8.

3.5.5. Wisard algorithm
WISARD (Meimon et al., 2005b) algorithm recovers an image

from powerspectrum and phase closure data. It shares some simi-
larities with the self-calibration method (cf. Section 3.2) to recover
missing Fourier phases. Given a current estimate of the image and
the phase closure data, WISARD first derives missing Fourier phase
information in such a way to minimize the number of unknowns.
Then, the synthesized Fourier phases are combined to the squared
root of the measured powerspectrum to generate pseudo complex
visibility data which are fit by the image restoration step. This step
is performed by using the chosen regularization and a penalty with
respect to the pseudo complex visibility data. However to account
for a more realistic approximation of the distribution of complex
visibility errors, WISARD make uses of a quadratic penalty which is
different from the usual Goodman approximation (Meimon et al.,
2005a). For the image restoration step, WISARD uses the same con-
strained optimization method as MIRA and also the same change
of variable to impose the normalization. Taken separately, the im-
age restoration step is a convex problem with a unique solution,
the self-calibration step is certainly not strictly convex but does
not seem to pose insurmountable problems (like in original self-
calibration method). Nevertheless the global problem is multi-
modal and, at least in difficult cases, the final solution depends
on the initial guess.

There are many possible regularizers built into WISARD, for in-
stance, the edge-preserving smoothness prior is implemented by:

fpriorðxÞ ¼
X
n1 ;n2

cð��1jrxjn1 ;n2
Þ ð95Þ

where � > 0 is a chosen threshold, jrxj is the magnitude of the spa-
tial gradient in the image:

jrxjn1 ;n2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn1þ1;n2 � xn1 ;n2 Þ

2 þ ðxn1 ;n2þ1 � xn1 ;n2 Þ
2

q
; ð96Þ

and c( ) is an ‘2 � ‘1 cost function such as:

cðzÞ ¼ jzj � logð1þ jzjÞ: ð97Þ

In words, the penalization in Eq. (95) behaves as a quadratic (resp.
linear) function where the magnitude of the spatial gradient is
small (resp. large) compared to �. Thus reduction of small local vari-
ations in the sought image whereas not penalizing too much strong
sharp features is achieved by this regularization penalty.

Note that MIRA and WISARD have been developed in parallel and
therefore share some common features. They use the same optimi-
zation engine, and implement similar regularizations (edge-pre-
serving smoothness, compactness). However they differ in the
way missing data is taken into account. WISARD takes a self-calibra-
tion approach to explicitly solve for missing Fourier phase informa-
tion; whereas MIRA which only use forward modeling (that is, from
the image parameters to the data) implicitly take into account any
lack of information. A more detailed comparison of the two algo-
rithms has been done by Le Besnerais et al. (2008).

3.6. Comparison of algorithms on simulated data

The above described algorithms have been compared on simu-
lated data during interferometric beauty contests (Lawson et al.,
2004; Lawson et al., 2006; Cotton et al., 2008). The results of the
contest were very encouraging. Although being quite different
algorithms, BSMEM, the building block method, MIRA and WISARD

gives good image reconstructions where the main features of the
object of interest can be identified in spite of the rather sparse
u–v coverage (compared to what is usually available by radio-
interferometry), the lack of some Fourier phase information and
the non-linearities of the measurements. BSMEM and MIRA appear
to be the most successful algorithms (they respectively won the
first two and last one interferometric beauty contest).

With their tuning parameters and, for some of them, the
requirement to start the algorithm with an initial image, these
algorithms still need some (modest) expertise to be used success-
fully. But this is quite manageable if one does not assume that im-
age reconstruction is done by a black box algorithm and realizes
that it is really a data processing task which requires user feedback
and interaction. For instance, the tuning of the regularization level
can be derived from Bayesian considerations but can also almost be
done by visual inspection of the restored image. From Fig. 7 can see
the effects of under-regularization (which yields more artifacts)
and over-regularization (which yields over simplification of the
image). In that case, a good regularization level is probably be-
tween l = 10�5 and l = 10�4 and any choice in this range would
give a good image. Indeed, the �50 students of the 2008’ VLTI Sum-
mer School held in Keszthely were all able to obtain acceptable re-
sults with MIRA after a few trials and errors.

Fig. 6 shows image reconstructions from one of the data sets of
the 2004’ Beauty Contest (Lawson et al., 2004) and with different
types of regularization. The most obvious result is that the synthe-
sized images do not greatly differ and are all quite acceptable
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Fig. 7. Image reconstruction under various regularization levels. Algorithm is MIRA with edge-preserving regularization given in Eq. (95) with � = 10�4 and l = 10�6 (top-left),
l = 10�5 (top-right), l = 10�4 (bottom-left) and l = 3 � 10�3 (bottom-right).

6 4 2 0 2− 4− 6−

−6

−4

−2

 0

 2

 4

 6

+0.00e+00

+5.60e−05

+1.12e−04

+1.68e−04

+2.24e−04

+2.80e−04

+3.36e−04

+3.92e−04

+4.48e−04

+5.04e−04

+5.60e−04

relative α (milliarcseconds)

re
la

tiv
e

δ 
(m

illi
ar

cs
ec

on
ds

)

6 4 2 0 2− 4− 6−
−6

−4

−2

 0

 2

 4

 6

+0.00e+00

+5.28e−05

+1.06e−04

+1.59e−04

+2.11e−04

+2.64e−04

+3.17e−04

+3.70e−04

+4.23e−04

+4.76e−04

+5.28e−04

relative α (milliarcseconds)

re
la

tiv
e

δ 
(m

illi
ar

cs
ec

on
ds

)

Fig. 8. Image reconstruction without any Fourier phase information. The initial image must not be symmetrical and was generated with uniformly distributed random pixel
values.
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approximations of the reality (compare for instance with the dirty
image in Fig. 4). Hence, providing the level of the priors is correctly
set, the particular choice of a given regularizer can be seen as a
refinement that can be done after some reconstruction attempts
with a prior that is simpler to tune. At least, the qualitative type
of prior is that really matters not the specific expression of the pen-
alty imposing the prior.
4. Discussion

The general framework of inverse problem approach has been
used to formally analyze the requirements of image restoration
algorithms for optical interferometry. In particular, the ability to
account for prior information is critical to supplement missing
data. Indeed, effective algorithms must be able to perform some
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kind of Fourier interpolation to overcome the sparseness of the u–v
coverage and to recover the Fourier phases while this information
is only partially available. Unknown complex throughputs and
non-linearities in the measurements are other issues that must
be overcame by the image restoration algorithms.

This framework has been used to describe the most important
existing algorithms as being more or less directly related to the
optimization of a mixed criterion under some strict constraints
such as positivity and normalization. Two different type of terms
appear into this criterion: likelihood terms which enforce agree-
ment of the model image with the actual data and regularization
terms which maintain the image close to the priors. Hence, the dif-
ferences between the various algorithms lie in the kind of mea-
surements considered, the assumed data model and the type of
prior. For non-convex criteria which occur when the complex
throughputs are unknown or when non-linear estimators are mea-
sured to overcome turbulence effects, the initial solution and the
optimization strategy are also key components of the algorithms.
Although global optimization is required to solve such multi-modal
problems, the reading of the excellent books by Nocedal and
Wright (2006) and Bonnans et al. (2006) is recommended for a
good understanding of numerical optimization methods. For in-
stance, the method of Skilling and Bryan (1984) integrates most
components of a successful optimization strategy (precondition-
ing, automatic tuning of the regularization level, etc.).

Compared to radio-interferometry, image synthesis in optical
interferometry turns out to be a task of higher difficulty due to
the much sparser u–v coverage and to the non-linearities. For
low signal to noise data (i.e. faint objects), the best can be extracted
from the measurements only if the likelihood term is a good
approximation of the true one. This may rules out regridding
(which introduces correlations usually ignored) and the Goodman
model of noise for complex data which are both used in radio-
interferometry to simplify image restoration. Available algorithms
are however now ready for image reconstruction from real data.
These algorithms are not fully automated black boxes: at least
some tuning parameters and the type of regularization are left to
the user choice. A general understanding of the mechanisms in-
volved into image restoration algorithms is mandatory to fully ex-
ploit any of these methods. This is also needed to analyze possible
artifacts in the synthesized images.

There is plenty of possible future developments for image resto-
ration methods. To mention only a few: reconstruction of 3-D mul-
ti-wavelength images, reconstruction from multiple data sets (to
account for a lower resolution image or for calibration data). Also
another possible source of inspiration could be provided by the lit-
erature in medical imaging since tomographic data share many
common properties with interferometric data (basically it consists
in sparse samples in the Fourier u–v plane).

Appendix A. A practical example with MiRA

Multi-aperture image reconstruction algorithm (MiRA) was
specifically developed for image reconstruction from optical inter-
ferometric data. The software is written in Yorick8 with some
extensions and is freely distributed.9 To use MiRA, you must have in-
stalled recent versions of Yorick (version P 2.1.05 or CVS version),
Yeti10 (version P 6.2.3) and OptimPack11 (version P 1.3).

In what follows, examples of image reconstruction with MIRA

are shown with comments to explain the different steps. The
examples are performed into an interactive Yorick session, hence
8 http://yorick.sourceforge.net/.
9 http://www-obs.univ-lyon1.fr/labo/perso/eric.thiebaut/mira.html.

10 http://www-obs.univ-lyon1.fr/labo/perso/eric.thiebaut/yeti.html.
11 http://www-obs.univ-lyon1.fr/labo/perso/eric.thiebaut/optimpack.html.
commands are typed at Yorick prompt. Yorick’s syntax is very sim-
ilar to that of C. Documentation for a particular function or proce-
dure, says cmd, is obtained by typing tt help, cmd and then the
Return key.

Typically, the different stages are:

1. Load Mira software:

include, "mira.i";
2. Load input data into opaque object:

ws=mira_new (MIRA_HOME + "data/data1.oifits");
where MIRA_HOME is a global variable defined by MIRA with the
name of the directory where MIRA software is installed (with a fi-
nal "/"). Note that + is used for string concatenation in Yorick.
Instead of ws, another variable name can be used to store the
opaque object (not forgetting to change the code below
accordingly).

3. Configure for image reconstruction:

mira config;ws;xform ¼ 00exact00;dim ¼ 100;

pixelsize ¼ 0:4 	 MIRA MILLIARCSECOND;

xform is the linear transform to use to approximate the Fourier
transform on an irregularly spaced grid, here "exact" means to
use the exact but slow transform, another possibility is
xform = ‘‘fft” to use Fast Fourier Transform and bi-linear inter-
polation of the spatial frequencies (cf. Section 2.3); dim is the
number of pixels along one side of the image, the image is
square; pixelsize is the angular size of the pixels in radians,
MIRA_MILLIARCSECOND is another global variable set by MIRA.

4. Choose a regularization method for the term fprior(x):

rgl ¼ rgl newð00smoothness00Þ;

which returns another opaque object that stores the type and the
parameters of the regularization method. There are many other
regularization methods built into MIRA and which can be listed
by the command rgl_info.

5. Create an initial image which is a point-like object:

dim¼mira get dimðwsÞ; == get image dimension

img0¼arrayðdouble; dim; dimÞ; == creates DIMxDIM array

img0ðdim=2; dim=2Þ¼1:0; == set central pixel

where // marks a comment until the end of line.
6. Attempt an image reconstruction (starting from the point-like

object):

img1 ¼ mira solveðws;img0;maxeval ¼ 500;

verb ¼ 1;xmin ¼ 0:0;normalization ¼ 1;

regul ¼ rgl;mu ¼ 1e6Þ;

where maxeval set the maximum number of evaluations of the
penalty function fdata(x) + l fprior(x), verb set the frequency of
the displayed information, xmin set the minimum value of the
image pixels and is used here to impose positivity, normaliza-
tion set the normalization of the image, regul is the regularizer,
and mu is the regularization weight (the parameter l).

7. The image obtained by the previous command may not be a sat-
isfying reconstruction because: (i) the algorithm has not yet
converged; (ii) the regularization method or the regularization
parameters (e.g. l) are not correct; (iii) the image is not cen-
tered in the field of view (the data is insensitive to a shift of
the image); etc. To continue the iterations, it is possible to
resume the reconstruction starting with the image obtained
so far:

http://yorick.sourceforge.net/
http://www-obs.univ-lyon1.fr/labo/perso/eric.thiebaut/mira.html
http://www-obs.univ-lyon1.fr/labo/perso/eric.thiebaut/yeti.html
http://www-obs.univ-lyon1.fr/labo/perso/eric.thiebaut/optimpack.html
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img1 ¼ mira solve ðws;img1;maxeval ¼ 500;

verb ¼ 1;xmin ¼ 0:0;normalization ¼ 1;

regul ¼ rgl;mu ¼ 1e6Þ;

(note that img1 has been used in place of img0 as the initial im-
age). It is also possible to use different parameters or, for in-
stance, to continue the reconstruction with the recentered
image:

img1¼mira solve ðws;mira recenterðimg1Þ;
maxeval¼500;verb¼1;xmin¼0:0;normalization¼1;
regul¼rgl;mu¼1e6Þ;

Generally a few calls to mira_solve with different starting
points and different regularization settings will be needed to find
a good solution.

8. As a final example, let us change the regularization to use the
‘2 � ‘1 smoothness constraint defined in Eq. (95):

==Define regularization :

rgl¼rgl�newð00xsmooth00Þ;
rgl�config; rgl; 00cost00; 00cost�l2l100;

00threshold00; 1e�4;
00dimlist00; dimsofðimg0Þ;

==Initial reconstruction ðstarting from a the previous imageÞ :
img2¼mira�solve ðws; img1; maxeval¼2000; verb¼1; xmin¼0:0;

normalization¼1; regul¼rgl; mu¼3e5Þ;
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